MATH 20D Spring 2023 Lecture 3.

Linear IVP's, the logistics equations, and 1st order IVP's.

Outline

(1) Linear Initial Value Problems

(2) Non-Linear First Order Initial Value Problems

Contents

(1) Linear Initial Value Problems

(2) Non-Linear First Order Initial Value Problems

Linear Initial Value Problems

Definition

An n-th order linear initial value problem (IVP) is an n-th order linear ODE

$$
y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

together with a family of initial conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1}
$$

such that $x_{0}, y_{0}, y_{1}, \ldots, y_{n-1}$ are fixed constants and the functions

$$
a_{n-1}(t), \ldots, a_{0}(t), g(t)
$$

are continuous at x_{0}.

Linear Initial Value Problems

Definition

An n-th order linear initial value problem (IVP) is an n-th order linear ODE

$$
y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

together with a family of initial conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1}
$$

such that $x_{0}, y_{0}, y_{1}, \ldots, y_{n-1}$ are fixed constants and the functions

$$
a_{n-1}(t), \ldots, a_{0}(t), g(t)
$$

are continuous at x_{0}.

Theorem

An n-th order linear IVP has a unique solution $y_{\text {sol }}(t)$ on any interval $I \subseteq \mathbb{R}$ on which the functions $a_{n-1}(t), \ldots, a_{0}(t)$, and $g(t)$ are all continuous.

The exponential function

Example

Show that the first order linear IVP

$$
y^{\prime}(t)-y(t)=0, \quad y(0)=1
$$

has a unique solution with domain \mathbb{R}.

The exponential function

Example

Show that the first order linear IVP

$$
y^{\prime}(t)-y(t)=0, \quad y(0)=1
$$

has a unique solution with domain \mathbb{R}.
Existence: Recall the familiar exponential function

$$
y: \mathbb{R} \rightarrow \mathbb{R}_{>0}, \quad y(x)=e^{x} .
$$

One way to define e^{x} is by the power series $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$.

The exponential function

Example

Show that the first order linear IVP

$$
y^{\prime}(t)-y(t)=0, \quad y(0)=1
$$

has a unique solution with domain \mathbb{R}.
Existence: Recall the familiar exponential function

$$
y: \mathbb{R} \rightarrow \mathbb{R}_{>0}, \quad y(x)=e^{x} .
$$

One way to define e^{x} is by the power series $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$.

- The series converges absolutely for all $x \in \mathbb{R}$ (ratio test).

The exponential function

Example

Show that the first order linear IVP

$$
y^{\prime}(t)-y(t)=0, \quad y(0)=1
$$

has a unique solution with domain \mathbb{R}.
Existence: Recall the familiar exponential function

$$
y: \mathbb{R} \rightarrow \mathbb{R}_{>0}, \quad y(x)=e^{x} .
$$

One way to define e^{x} is by the power series $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$.

- The series converges absolutely for all $x \in \mathbb{R}$ (ratio test).
- However to justify the formal calculation

$$
\frac{d}{d x}\left(e^{x}\right)=\frac{d}{d x}\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)=\sum_{n=0}^{\infty} \frac{d}{d x}\left(\frac{x^{n}}{n!}\right)=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{n!}=e^{x}
$$

requires material from MATH 140B. (uniform convergence).

Alternative proof for the existence of e^{x}.

- Define $\log (\cdot): \mathbb{R}_{>0} \rightarrow \mathbb{R}$ by the definite integral

$$
\log (x)=\int_{1}^{x} \frac{d t}{t} \quad x \in \mathbb{R}_{>0}
$$

Alternative proof for the existence of e^{x}.

- Define $\log (\cdot): \mathbb{R}_{>0} \rightarrow \mathbb{R}$ by the definite integral

$$
\log (x)=\int_{1}^{x} \frac{d t}{t} \quad x \in \mathbb{R}_{>0}
$$

- By the first fundamental theorem of calculus, $\log (\cdot)$ is differentiable and

$$
\log ^{\prime}(x)=\frac{1}{x}
$$

Alternative proof for the existence of e^{x}.

- Define $\log (\cdot): \mathbb{R}_{>0} \rightarrow \mathbb{R}$ by the definite integral

$$
\log (x)=\int_{1}^{x} \frac{d t}{t} \quad x \in \mathbb{R}_{>0}
$$

- By the first fundamental theorem of calculus, $\log (\cdot)$ is differentiable and

$$
\log ^{\prime}(x)=\frac{1}{x} .
$$

- As $\log (\cdot)$ is one-to-one there exists a continuous function

$$
\exp (\cdot): \mathbb{R} \rightarrow \mathbb{R}_{>0}
$$

such that $y=\exp (x) \Longrightarrow x=\log (y)$.

Alternative proof for the existence of e^{x}.

- Define $\log (\cdot): \mathbb{R}_{>0} \rightarrow \mathbb{R}$ by the definite integral

$$
\log (x)=\int_{1}^{x} \frac{d t}{t} \quad x \in \mathbb{R}_{>0}
$$

- By the first fundamental theorem of calculus, $\log (\cdot)$ is differentiable and

$$
\log ^{\prime}(x)=\frac{1}{x} .
$$

- As $\log (\cdot)$ is one-to-one there exists a continuous function

$$
\exp (\cdot): \mathbb{R} \rightarrow \mathbb{R}_{>0}
$$

such that $y=\exp (x) \Longrightarrow x=\log (y)$.

- Since $\log ^{\prime}(x)$ is never zero $\exp (x)$ is everywhere differentiable. So if $y=\log (x)$ then $x=\exp (y)$ and

$$
\frac{d x}{d y}=\frac{1}{d y / d x}=\frac{1}{\frac{d}{d x}(\log (x))}=\frac{1}{1 / x}=x=\exp (y) .
$$

The Complex Exponential

- One advantage of the power series definition

$$
\begin{equation*}
\exp (x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \tag{1}
\end{equation*}
$$

is that it makes sense even if $s, t \in \mathbb{R}$ and

$$
x=s+i t
$$

is a complex number.

The Complex Exponential

- One advantage of the power series definition

$$
\begin{equation*}
\exp (x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \tag{1}
\end{equation*}
$$

is that it makes sense even if $s, t \in \mathbb{R}$ and

$$
x=s+i t
$$

is a complex number.

Example

Let $\omega \in \mathbb{R}_{>0}$. In case (a) and (b) below, write down the solution to the IVP

$$
y^{\prime \prime}(t)+\omega^{2} y(t)=0
$$

subject to the initial conditions
(a) $y(0)=1$ and $y^{\prime}(0)=0$.
(b) $y(0)=1$ and $y^{\prime}(0)=i \omega$.

Contents

(1) Linear Initial Value Problems

(2) Non-Linear First Order Initial Value Problems

The Logistics Equation

A population $P(t)$ has carrying capacity $K>0$ and growth rate $r>0$.

- One model for the change in population is the Logistics Equation

$$
\frac{d P}{d t}=r P\left(1-\frac{P}{K}\right)
$$

The Logistics Equation

A population $P(t)$ has carrying capacity $K>0$ and growth rate $r>0$.

- One model for the change in population is the Logistics Equation

$$
\begin{equation*}
\frac{d P}{d t}=r P\left(1-\frac{P}{K}\right) \tag{2}
\end{equation*}
$$

Example

Suppose $C>0$ is constant and $P: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
P(t)=C e^{r t}(1-P(t) / K)
$$

- Use implicit differentiation to show that $P(t)$ solves the logistics equation.
- Show that if $P_{0} \notin\{0, K\}$ denotes the initial population then the function

$$
P: \mathbb{R} \rightarrow \mathbb{R}, \quad P(t)=\frac{P_{0} K e^{r t}}{K+P_{0}\left(e^{r t}-1\right)}
$$

solves (2) and satisfies $P(0)=P_{0}$.

(Optional Content)

Question

Is the solution to the IVP considered on the previous slide unique?

(Optional Content)

Question

Is the solution to the IVP considered on the previous slide unique?

Theorem

Consider a first order IVP of the form

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{3}
\end{equation*}
$$

where x_{0}, y_{0} are constants and $f(x, y)$ is a function. Suppose there exist a rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2}: a<x<b, \quad c<y<d\right\}
$$

such that $\left(x_{0}, y_{0}\right) \in R, f(x, y)$ continuous of R, and $\partial f / \partial y$ is continuous on R.

(Optional Content)

Question

Is the solution to the IVP considered on the previous slide unique?

Theorem

Consider a first order IVP of the form

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{3}
\end{equation*}
$$

where x_{0}, y_{0} are constants and $f(x, y)$ is a function. Suppose there exist a rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2}: a<x<b, \quad c<y<d\right\}
$$

such that $\left(x_{0}, y_{0}\right) \in R, f(x, y)$ continuous of R, and $\partial f / \partial y$ is continuous on R. Then there exists $\delta>0$ such that (3) has a unique solution $y_{\text {sol }}(x)$ on

$$
\left\{x \in \mathbb{R}: x_{0}-\delta<x<x_{0}+\delta\right\} .
$$

(Optional Content)

Question

Is the solution to the IVP considered on the previous slide unique?

Theorem

Consider a first order IVP of the form

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{3}
\end{equation*}
$$

where x_{0}, y_{0} are constants and $f(x, y)$ is a function. Suppose there exist a rectangle

$$
R=\left\{(x, y) \in \mathbb{R}^{2}: a<x<b, \quad c<y<d\right\}
$$

such that $\left(x_{0}, y_{0}\right) \in R, f(x, y)$ continuous of R, and $\partial f / \partial y$ is continuous on R. Then there exists $\delta>0$ such that (3) has a unique solution $y_{\text {sol }}(x)$ on

$$
\left\{x \in \mathbb{R}: x_{0}-\delta<x<x_{0}+\delta\right\} .
$$

We can use this to give an affirmative answer to the question above.

(Optional Content)

Example

Let C be constant and consider the non-linear ordinary differential equation

$$
y \frac{d y}{d x}-4 x=0
$$

(Optional Content)

Example

Let C be constant and consider the non-linear ordinary differential equation

$$
\begin{equation*}
y \frac{d y}{d x}-4 x=0 \tag{4}
\end{equation*}
$$

- Show if $\delta>0$ then the functions

$$
y_{1}:(-\delta, \delta) \rightarrow \mathbb{R}, \quad y_{1}(x)=2 x \quad \text { and } \quad y_{2}:(-\delta, \delta) \rightarrow \mathbb{R}, \quad y_{2}(x)=-2 x,
$$ are both solutions to (4) satisfying $y_{1}(0)=0=y_{2}(0)$.

(Optional Content)

Example

Let C be constant and consider the non-linear ordinary differential equation

$$
\begin{equation*}
y \frac{d y}{d x}-4 x=0 \tag{4}
\end{equation*}
$$

- Show if $\delta>0$ then the functions

$$
y_{1}:(-\delta, \delta) \rightarrow \mathbb{R}, \quad y_{1}(x)=2 x \quad \text { and } \quad y_{2}:(-\delta, \delta) \rightarrow \mathbb{R}, \quad y_{2}(x)=-2 x,
$$ are both solutions to (4) satisfying $y_{1}(0)=0=y_{2}(0)$.

- Explain why this is consistent with the theorem on the previous slide.

