MATH 20D Spring 2023 Lecture 3.

Linear IVP's, the logistics equations, and 1st order IVP's.

Outline

Linear Initial Value Problems

2 Non-Linear First Order Initial Value Problems

Contents

Linear Initial Value Problems

Non-Linear First Order Initial Value Problems

Linear Initial Value Problems

Definition

An *n*-th order linear initial value problem (IVP) is an *n*-th order linear ODE

$$y^{(n)}(t) + a_{n-1}(t)y^{(n-1)}(t) + \dots + a_1(t)y'(t) + a_0(t)y(t) = g(t)$$

together with a family of initial conditions

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, \quad y^{(n-1)}(x_0) = y_{n-1}$$

such that $x_0, y_0, y_1, \dots, y_{n-1}$ are fixed constants and the functions

$$a_{n-1}(t), \ldots, a_0(t), g(t)$$

are continuous at x_0 .

Linear Initial Value Problems

Definition

An *n*-th order linear initial value problem (IVP) is an *n*-th order linear ODE

$$y^{(n)}(t) + a_{n-1}(t)y^{(n-1)}(t) + \dots + a_1(t)y'(t) + a_0(t)y(t) = g(t)$$

together with a family of initial conditions

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, \quad y^{(n-1)}(x_0) = y_{n-1}$$

such that $x_0, y_0, y_1, \dots, y_{n-1}$ are fixed constants and the functions

$$a_{n-1}(t), \ldots, a_0(t), g(t)$$

are continuous at x_0 .

Theorem

An n-th order linear IVP has a unique solution $y_{\text{sol}}(t)$ on any interval $I \subseteq \mathbb{R}$ on which the functions $a_{n-1}(t), \ldots, a_0(t)$, and g(t) are all continuous.

Example

Show that the first order linear IVP

$$y'(t) - y(t) = 0,$$
 $y(0) = 1$

has a unique solution with domain \mathbb{R} .

Example

Show that the first order linear IVP

$$y'(t) - y(t) = 0,$$
 $y(0) = 1$

has a unique solution with domain \mathbb{R} .

Existence: Recall the familiar exponential function

$$y \colon \mathbb{R} \to \mathbb{R}_{>0}, \qquad y(x) = e^x.$$

One way to define e^x is by the **power series** $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$.

Example

Show that the first order linear IVP

$$y'(t) - y(t) = 0,$$
 $y(0) = 1$

has a unique solution with domain \mathbb{R} .

Existence: Recall the familiar exponential function

$$y: \mathbb{R} \to \mathbb{R}_{>0}, \quad y(x) = e^x.$$

One way to define e^x is by the **power series** $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$.

• The series converges absolutely for all $x \in \mathbb{R}$ (ratio test).

Example

Show that the first order linear IVP

$$y'(t) - y(t) = 0,$$
 $y(0) = 1$

has a unique solution with domain \mathbb{R} .

Existence: Recall the familiar exponential function

$$y: \mathbb{R} \to \mathbb{R}_{>0}, \quad y(x) = e^x.$$

One way to define e^x is by the **power series** $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$.

- The series converges absolutely for all $x \in \mathbb{R}$ (ratio test).
- However to justify the formal calculation

$$\frac{d}{dx}(e^x) = \frac{d}{dx}\left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) = \sum_{n=0}^{\infty} \frac{d}{dx}\left(\frac{x^n}{n!}\right) = \sum_{n=1}^{\infty} \frac{nx^{n-1}}{n!} = e^x$$

requires material from MATH 140B. (uniform convergence).

• Define $\log(\cdot) \colon \mathbb{R}_{>0} \to \mathbb{R}$ by the definite integral

$$\log(x) = \int_1^x \frac{dt}{t} \qquad x \in \mathbb{R}_{>0}.$$

• Define $\log(\cdot) : \mathbb{R}_{>0} \to \mathbb{R}$ by the definite integral

$$\log(x) = \int_1^x \frac{dt}{t} \qquad x \in \mathbb{R}_{>0}.$$

ullet By the first fundamental theorem of calculus, $\log(\cdot)$ is differentiable and

$$\log'(x) = \frac{1}{x}.$$

• Define $\log(\cdot) : \mathbb{R}_{>0} \to \mathbb{R}$ by the definite integral

$$\log(x) = \int_1^x \frac{dt}{t} \qquad x \in \mathbb{R}_{>0}.$$

ullet By the first fundamental theorem of calculus, $\log(\cdot)$ is differentiable and

$$\log'(x) = \frac{1}{x}.$$

• As $log(\cdot)$ is one-to-one there exists a continuous function

$$\exp(\cdot) \colon \mathbb{R} \to \mathbb{R}_{>0}$$

such that $y = \exp(x) \Longrightarrow x = \log(y)$.

• Define $\log(\cdot) \colon \mathbb{R}_{>0} \to \mathbb{R}$ by the definite integral

$$\log(x) = \int_1^x \frac{dt}{t} \qquad x \in \mathbb{R}_{>0}.$$

ullet By the first fundamental theorem of calculus, $\log(\cdot)$ is differentiable and

$$\log'(x) = \frac{1}{x}.$$

• As $log(\cdot)$ is one-to-one there exists a continuous function

$$\exp(\cdot) \colon \mathbb{R} \to \mathbb{R}_{>0}$$

such that $y = \exp(x) \Longrightarrow x = \log(y)$.

• Since $\log'(x)$ is never zero $\exp(x)$ is everywhere differentiable. So if $y = \log(x)$ then $x = \exp(y)$ and

$$\frac{dx}{dy} = \frac{1}{dy/dx} = \frac{1}{\frac{d}{dx}(\log(x))} = \frac{1}{1/x} = x = \exp(y).$$

The Complex Exponential

One advantage of the power series definition

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \tag{1}$$

is that it makes sense even if $s, t \in \mathbb{R}$ and

$$x = s + it$$

is a complex number.

The Complex Exponential

One advantage of the power series definition

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \tag{1}$$

is that it makes sense even if $s, t \in \mathbb{R}$ and

$$x = s + it$$

is a complex number.

Example

Let $\omega \in \mathbb{R}_{>0}$. In case (a) and (b) below, write down the solution to the IVP

$$y''(t) + \omega^2 y(t) = 0$$

subject to the initial conditions

- (a) y(0) = 1 and y'(0) = 0.
- (b) y(0) = 1 and $y'(0) = i\omega$.

Contents

Linear Initial Value Problems

2 Non-Linear First Order Initial Value Problems

The Logistics Equation

A population P(t) has carrying capacity K > 0 and growth rate r > 0.

One model for the change in population is the Logistics Equation

$$\frac{dP}{dt} = rP(1 - \frac{P}{K})$$

The Logistics Equation

A population P(t) has carrying capacity K > 0 and growth rate r > 0.

One model for the change in population is the Logistics Equation

$$\frac{dP}{dt} = rP(1 - \frac{P}{K}) \tag{2}$$

Example

Suppose C > 0 is constant and $P: \mathbb{R} \to \mathbb{R}$ satisfies

$$P(t) = Ce^{rt}(1 - P(t)/K).$$

- Use implicit differentiation to show that P(t) solves the logistics equation.
- Show that if $P_0 \notin \{0, K\}$ denotes the initial population then the function

$$P: \mathbb{R} \to \mathbb{R}, \qquad P(t) = \frac{P_0 K e^{rt}}{K + P_0 (e^{rt} - 1)}$$

solves (2) and satisfies $P(0) = P_0$.

Question

Is the solution to the IVP considered on the previous slide unique?

Question

Is the solution to the IVP considered on the previous slide unique?

Theorem

Consider a first order IVP of the form

$$\frac{dy}{dx} = f(x, y), \qquad y(x_0) = y_0 \tag{3}$$

where x_0 , y_0 are constants and f(x, y) is a function. Suppose there exist a rectangle

$$R = \{(x, y) \in \mathbb{R}^2 : a < x < b, \quad c < y < d\}$$

such that $(x_0, y_0) \in R$, f(x, y) continuous of R, and $\partial f/\partial y$ is continuous on R.

Question

Is the solution to the IVP considered on the previous slide unique?

Theorem

Consider a first order IVP of the form

$$\frac{dy}{dx} = f(x, y), \qquad y(x_0) = y_0 \tag{3}$$

where x_0 , y_0 are constants and f(x, y) is a function. Suppose there exist a rectangle

$$R = \{(x, y) \in \mathbb{R}^2 : a < x < b, \quad c < y < d\}$$

such that $(x_0, y_0) \in R$, f(x, y) continuous of R, and $\partial f/\partial y$ is continuous on R. Then there exists $\delta > 0$ such that (3) has a unique solution $y_{sol}(x)$ on

$${x \in \mathbb{R} : x_0 - \delta < x < x_0 + \delta}.$$

Question

Is the solution to the IVP considered on the previous slide unique?

Theorem

Consider a first order IVP of the form

$$\frac{dy}{dx} = f(x, y), \qquad y(x_0) = y_0 \tag{3}$$

where x_0, y_0 are constants and f(x, y) is a function. Suppose there exist a rectangle

$$R = \{(x, y) \in \mathbb{R}^2 : a < x < b, \quad c < y < d\}$$

such that $(x_0, y_0) \in R$, f(x, y) continuous of R, and $\partial f/\partial y$ is continuous on R. Then there exists $\delta > 0$ such that (3) has a unique solution $y_{sol}(x)$ on

$$\{x \in \mathbb{R} \colon x_0 - \delta < x < x_0 + \delta\}.$$

We can use this to give an **affirmative** answer to the question above.

Example

Let C be constant and consider the non-linear ordinary differential equation

$$y\frac{dy}{dx} - 4x = 0$$

Example

Let C be constant and consider the non-linear ordinary differential equation

$$y\frac{dy}{dx} - 4x = 0 (4)$$

• Show if $\delta > 0$ then the functions

$$y_1 \colon (-\delta, \delta) \to \mathbb{R}, \quad y_1(x) = 2x$$
 and $y_2 \colon (-\delta, \delta) \to \mathbb{R}, \quad y_2(x) = -2x,$

are both solutions to (4) satisfying $y_1(0) = 0 = y_2(0)$.

Example

Let C be constant and consider the non-linear ordinary differential equation

$$y\frac{dy}{dx} - 4x = 0 (4)$$

• Show if $\delta > 0$ then the functions

$$y_1 \colon (-\delta, \delta) \to \mathbb{R}, \quad y_1(x) = 2x \quad \text{and} \quad y_2 \colon (-\delta, \delta) \to \mathbb{R}, \quad y_2(x) = -2x,$$

are both solutions to (4) satisfying $y_1(0) = 0 = y_2(0)$.

• Explain why this is consistent with the theorem on the previous slide.